Bounding the zeta function

Christopher Hughes
Joint with David Farmer and Steve Gonek

The University of York

Jeju, Korea, 23 August 2012

How big can the Riemann zeta function get?

How big can the Riemann zeta function get?

How big can the Riemann zeta function get?

ζ

Extreme values of zeta

Conjecture (Farmer, Gonek, Hughes)

$$
\max _{t \in[0, T]}\left|\zeta\left(\frac{1}{2}+\mathrm{it}\right)\right|=\exp \left(\left(\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log T \log \log T}\right)
$$

Bounds on extreme values of zeta

Theorem (Littlewood; Ramachandra and Sankaranarayanan, Soundararajan; Chandee and Soundararajan)
Under RH, there exists a C such that

$$
\max _{t \in[0, T]}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|=O\left(\exp \left(C \frac{\log T}{\log \log T}\right)\right)
$$

Theorem (Montgomery; Balasubramanian and Ramachandra; Balasubramanian; Soundararajan)
There exists a C^{\prime} such that

$$
\max _{t \in[0, T]}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|=\Omega\left(\exp \left(C^{\prime} \sqrt{\frac{\log T}{\log \log T}}\right)\right)
$$

The set-up: Random Matrix Theory

Random matrix theory

- Nuclear physics (energy spectra of heavy nuclei).
- Quantum Chaos (is a system classically chaotic or integrable?)
- Significance of correlations in large data sets.
- Bus arrival times in Cuernavaca, Mexico \& spacing between cars parked in London.
- And many, many other applications.
- Interesting and challenging mathematics.
- Models zeros of the Riemann zeta function.

Characteristic polynomials

Keating and Snaith modelled the Riemann zeta function with

$$
\begin{aligned}
Z_{U_{N}}(\theta) & :=\operatorname{det}\left(I_{N}-U_{N} e^{-\mathrm{i} \theta}\right) \\
& =\prod_{n=1}^{N}\left(1-e^{\mathrm{i}\left(\theta_{n}-\theta\right)}\right)
\end{aligned}
$$

where U_{N} is an $N \times N$ unitary matrix chosen with Haar measure.

The matrix size N is connected to the height up the critical line T via

$$
N=\log \frac{T}{2 \pi}
$$

Characteristic polynomials

Graph of the value distribution of $\log \left|\zeta\left(\frac{1}{2}+\mathrm{it}\right)\right|$ around the 10^{20} th zero (red), against the probability density of $\log \left|Z_{U_{N}}(0)\right|$ with $N=42$ (green).

Characteristic polynomials: Normal distribution

Theorem (Selberg)

As $T \rightarrow \infty$,

$$
\frac{1}{T} \text { meas }\left\{0 \leq t \leq T: \frac{\log \left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|}{\sqrt{\frac{1}{2} \log \log T}} \leq C\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{C} e^{-x^{2} / 2} \mathrm{~d} x
$$

Theorem (Keating-Snaith)

As $N \rightarrow \infty$,

$$
\mathbb{P}\left\{\frac{\log \left|Z_{U_{N}}(0)\right|}{\sqrt{\frac{1}{2} \log N}} \leq C\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{C} e^{-x^{2} / 2} \mathrm{~d} x
$$

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	
$4^{\text {th }}$	$\frac{1}{12} \frac{6}{\pi^{2}}(\log T)^{4}$	

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	
$4^{\text {th }}$	$\frac{1}{12} \frac{6}{\pi^{2}}(\log T)^{4}$	
$6^{\text {th }}$	$\frac{42}{9!} a(3)(\log T)^{9}$	

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	
$4^{\text {th }}$	$\frac{1}{12} \frac{6}{\pi^{2}}(\log T)^{4}$	
$6^{\text {th }}$	$\frac{42}{9!} a(3)(\log T)^{9}$	
$8^{\text {th }}$	$\frac{24024}{16!} a(4)(\log T)^{16}$	

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	
$4^{\text {th }}$	$\frac{1}{12} \frac{6}{\pi^{2}}(\log T)^{4}$	
$6^{\text {th }}$	$\frac{42}{9!} a(3)(\log T)^{9}$	
$8^{\text {th }}$	$\frac{24024}{16!} a(4)(\log T)^{16}$	
$2 k^{\text {th }}$	$?$	

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	
$4^{\text {th }}$	$\frac{1}{12} \frac{6}{\pi^{2}}(\log T)^{4}$	
$6^{\text {th }}$	$\frac{42}{9!} a(3)(\log T)^{9}$	
$8^{\text {th }}$	$\frac{24024}{16!} a(4)(\log T)^{16}$	
$2 k^{\text {th }}$	$?$	$\frac{G(k+1)^{2}}{G(2 k+1)} N^{k^{2}}$

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	N
$4^{\text {th }}$	$\frac{1}{12} \frac{6}{\pi^{2}}(\log T)^{4}$	$\frac{1}{12} N^{4}$
$6^{\text {th }}$	$\frac{42}{9!} a(3)(\log T)^{9}$	$\frac{42}{9!} N^{9}$
$8^{\text {th }}$	$\frac{24024}{16!} a(4)(\log T)^{16}$	$\frac{24024}{16!} N^{16}$
$2 k^{\text {th }}$	$?$	$\frac{G(k+1)^{2}}{G(2 k+1)} N^{k^{2}}$

Characteristic polynomials: Moments

Moment	Riemann Zeta Function	Characteristic polynomial
$2^{\text {nd }}$	$\log T$	N
$4^{\text {th }}$	$\frac{1}{12} \frac{6}{\pi^{2}}(\log T)^{4}$	$\frac{1}{12} N^{4}$
$6^{\text {th }}$	$\frac{42}{9!} a(3)(\log T)^{9}$	$\frac{42}{9!} N^{9}$
$8^{\text {th }}$	$\frac{24024}{16!} a(4)(\log T)^{16}$	$\frac{24024}{16!} N^{16}$
$2 k^{\text {th }}$	$\frac{G(k+1)^{2}}{G(2 k+1)} a(k)(\log T)^{k^{2}}$	$\frac{G(k+1)^{2}}{G(2 k+1)} N^{k^{2}}$

The Keating-Snaith conjecture

Theorem

$$
\mathbb{E}\left[\left|Z_{U_{N}}(0)\right|^{2 k}\right] \sim \frac{G^{2}(k+1)}{G(2 k+1)} N^{k^{2}}
$$

Conjecture

$$
\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2 k} \mathrm{~d} t \sim a(k) \frac{G^{2}(k+1)}{G(2 k+1)}\left(\log \frac{T}{2 \pi}\right)^{k^{2}}
$$

where

$$
a(k)=\prod_{\substack{p \\ \text { prime }}}\left(1-\frac{1}{p}\right)^{k^{2}} \sum_{m=0}^{\infty}\left(\frac{\Gamma(m+k)}{m!\Gamma(k)}\right)^{2} p^{-m}
$$

An Euler-Hadamard hybrid

Theorem (Gonek, Hughes, Keating)

A simplified form of our theorem is:

$$
\zeta\left(\frac{1}{2}+\mathrm{i} t\right)=P(t ; X) Z(t ; X)+\text { errors }
$$

where

$$
P(t ; X)=\prod_{p \leq X}\left(1-\frac{1}{p^{\frac{1}{2}+i t}}\right)^{-1}
$$

and

$$
Z(t ; X)=\exp \left(\sum_{\gamma_{n}} \mathrm{Ci}\left(\left|t-\gamma_{n}\right| \log X\right)\right)
$$

An Euler-Hadamard hybrid: Primes only

An Euler-Hadamard hybrid: Zeros only

An Euler-Hadamard hybrid: Primes and zeros

Graph of $\left|\zeta\left(\frac{1}{2}+\mathrm{i}\left(t+t_{0}\right)\right)\right|$ (black) and $\left|P\left(t+t_{0} ; X\right) Z\left(t+t_{0} ; X\right)\right|$, with $t_{0}=\gamma_{10^{12}+40}$, with $X=\log t_{0} \approx 26$ (red) and $X=1000$ (green).

An Euler-Hadamard hybrid: Moments

Theorem

If $X=O(\log T)$

$$
\frac{1}{T} \int_{T}^{2 T}|P(t ; X)|^{2 k} \mathrm{~d} t \sim a(k)\left(e^{\gamma} \log X\right)^{k^{2}}
$$

Conjecture

If $X, T \rightarrow \infty$ such that $\frac{\log T}{\log X} \rightarrow \infty$

$$
\frac{1}{T} \int_{0}^{T}|Z(t ; X)|^{2 k} \mathrm{~d} t \sim \frac{G^{2}(k+1)}{G(2 k+1)}\left(\frac{\log T}{e^{\gamma} \log X}\right)^{k^{2}}
$$

This recovers the Keating-Snaith conjecture.

Argument 1: Modeling Zeros With RMT

Extreme values of zeta: Zeros

Simply taking the largest value of a characteristic polynomial doesn't work.

Extreme values of zeta: Zeros

Simply taking the largest value of a characteristic polynomial doesn't work.
Split the interval $[0, T]$ up into

$$
M=\frac{T \log T}{N}
$$

blocks, each containing approximately N zeros.

Extreme values of zeta: Zeros

Simply taking the largest value of a characteristic polynomial doesn't work.
Split the interval $[0, T]$ up into

$$
M=\frac{T \log T}{N}
$$

blocks, each containing approximately N zeros.
Model each block with the characteristic polynomial of an $N \times N$ random unitary matrix.

Extreme values of zeta: Zeros

Simply taking the largest value of a characteristic polynomial doesn't work.
Split the interval $[0, T]$ up into

$$
M=\frac{T \log T}{N}
$$

blocks, each containing approximately N zeros.
Model each block with the characteristic polynomial of an $N \times N$ random unitary matrix.
Find the smallest $K=K(M, N)$ such that choosing M independent characteristic polynomials of size N, almost certainly none of them will be bigger than K.

Extreme values of zeta: Zeros

Note that

$$
\mathbb{P}\left\{\max _{1 \leq j \leq M} \max _{\theta}\left|Z_{U_{N}^{(j)}}(\theta)\right| \leq K\right\}=\mathbb{P}\left\{\max _{\theta}\left|Z_{U_{N}}(\theta)\right| \leq K\right\}^{M}
$$

Theorem

Let $0<\beta<2$. If $M=\exp \left(N^{\beta}\right)$, and if

$$
K=\exp \left(\sqrt{\left(1-\frac{1}{2} \beta+\varepsilon\right) \log M \log N}\right)
$$

then

$$
\mathbb{P}\left\{\max _{1 \leq j \leq M} \max _{\theta}\left|Z_{U_{N}^{(j)}}(\theta)\right| \leq K\right\} \rightarrow 1
$$

as $N \rightarrow \infty$ for all $\varepsilon>0$, but for no $\varepsilon<0$.

Extreme values of zeta: Zeros

Recall

$$
\zeta\left(\frac{1}{2}+\mathrm{i} t\right)=P(t ; X) Z(t ; X)+\text { errors }
$$

and that $Z(t ; X)$ can be modelled by characteristic polynomials of size

$$
N=\frac{\log T}{e^{\gamma} \log X}
$$

Extreme values of zeta: Zeros

Recall

$$
\zeta\left(\frac{1}{2}+\mathrm{i} t\right)=P(t ; X) Z(t ; X)+\text { errors }
$$

and that $Z(t ; X)$ can be modelled by characteristic polynomials of size

$$
N=\frac{\log T}{e^{\gamma} \log X}
$$

Therefore the previous theorem suggests

Conjecture

If $X=\log T$, then

$$
\max _{t \in[0, T]}|Z(t ; X)|=\exp \left(\left(\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log T \log \log T}\right)
$$

Extreme values of zeta: Zeros

Theorem

By the PNT, if $X=\log T$ then for any $t \in[0, T]$,

$$
P(t ; X)=O\left(\exp \left(c \frac{\sqrt{\log T}}{\log \log T}\right)\right)
$$

Thus one is led to the max values conjecture

Conjecture

$$
\max _{t \in[0, T]}\left|\zeta\left(\frac{1}{2}+\mathrm{it}\right)\right|=\exp \left(\left(\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log T \log \log T}\right)
$$

Argument 2: Random Prime Model

Extreme values of zeta: Primes

First note that

$$
P(t ; X)=\exp \left(\sum_{p \leq X} \frac{1}{p^{1 / 2+i t}}\right) \times O(\log X)
$$

Extreme values of zeta: Primes

First note that

$$
P(t ; X)=\exp \left(\sum_{p \leq X} \frac{1}{p^{1 / 2+\mathrm{i} t}}\right) \times O(\log X)
$$

Treat $p^{-i t}$ as independent random variables distributed uniformly on the unit circle.
This suggests the distribution of

$$
\mathfrak{R e} \sum_{p \leq X} \frac{p^{-\mathrm{i} t}}{\sqrt{p}}
$$

tends to Gaussian with mean 0 and variance $\frac{1}{2} \log \log X$ as $X \rightarrow \infty$.

Extreme values of zeta: Primes

We let $X=\exp (\sqrt{\log T})$ and model the maximum of $P(t ; X)$ by finding the maximum of the Gaussian random variable sampled $T(\log T)^{1 / 2}$ times. This suggests

$$
\max _{t \in[0, T]}|P(t ; X)|=O\left(\exp \left(\left(\frac{1}{\sqrt{2}}+\varepsilon\right) \sqrt{\log T \log \log T}\right)\right)
$$

for all $\varepsilon>0$ and no $\varepsilon<0$.

Extreme values of zeta: Primes

We let $X=\exp (\sqrt{\log T})$ and model the maximum of $P(t ; X)$ by finding the maximum of the Gaussian random variable sampled $T(\log T)^{1 / 2}$ times. This suggests

$$
\max _{t \in[0, T]}|P(t ; X)|=O\left(\exp \left(\left(\frac{1}{\sqrt{2}}+\varepsilon\right) \sqrt{\log T \log \log T}\right)\right)
$$

for all $\varepsilon>0$ and no $\varepsilon<0$.
For such a large X, random matrix theory suggests that

$$
\max _{t \in[0, T]}|Z(t ; X)|=O(\exp (\sqrt{\log T})) .
$$

This gives another justification of the large values conjecture.

Argument 3: Zeros and Primes

Extreme values of zeta: Zeros and primes

If $X=\exp \left(\log ^{\alpha} T\right)$ with $0<\alpha<\frac{1}{2}$, then the largest values of $Z(t ; X)$ and $P(t ; X)$ are of approximately the same size and both will contribute to the largest values of $\zeta\left(\frac{1}{2}+\mathrm{it}\right)$.

Extreme values of zeta: Zeros and primes

If $X=\exp \left(\log ^{\alpha} T\right)$ with $0<\alpha<\frac{1}{2}$, then the largest values of $Z(t ; X)$ and $P(t ; X)$ are of approximately the same size and both will contribute to the largest values of $\zeta\left(\frac{1}{2}+\mathrm{i} t\right)$.
Specifically, $|Z(t ; X)|$ gets as large as

$$
\exp \left(\frac{1}{\sqrt{2}} \sqrt{(1-2 \alpha) \log T \log \log T}\right)
$$

and $|P(t ; X)|$ gets as large as

$$
\exp (\sqrt{\alpha \log T \log \log T})
$$

The product of these two is greater than our conjecture for all α between 0 and 1/2.

Extreme values of zeta: Zeros and primes

This is because $|Z(t ; X)|$ and $|P(t ; X)|$ will not simultaneously attain their maximum values.

Extreme values of zeta: Zeros and primes

This is because $|Z(t ; X)|$ and $|P(t ; X)|$ will not simultaneously attain their maximum values.
The distribution of $\log |Z(t ; X)|+\log |P(t ; X)|$ will be the convolution of the two distributions.

Extreme values of zeta: Zeros and primes

This is because $|Z(t ; X)|$ and $|P(t ; X)|$ will not simultaneously attain their maximum values.
The distribution of $\log |Z(t ; X)|+\log |P(t ; X)|$ will be the convolution of the two distributions.
Since $\zeta\left(\frac{1}{2}+\mathrm{it}\right)$ is close to its maximum value over a window of size $C / \log T$, we wish to find the smallest K such that

$$
\text { meas }\{0<t<T:|P(t ; X)||Z(t ; X)| \geq K\} \ll \frac{1}{\log T}
$$

Extreme values of zeta: Zeros and primes

This is because $|Z(t ; X)|$ and $|P(t ; X)|$ will not simultaneously attain their maximum values.
The distribution of $\log |Z(t ; X)|+\log |P(t ; X)|$ will be the convolution of the two distributions.
Since $\zeta\left(\frac{1}{2}+\mathrm{it}\right)$ is close to its maximum value over a window of size $C / \log T$, we wish to find the smallest K such that

$$
\text { meas }\{0<t<T:|P(t ; X)||Z(t ; X)| \geq K\} \ll \frac{1}{\log T}
$$

A saddle point approximation argument yields that if $X=\exp \left(\log ^{\alpha} T\right)$ then for all $0<\alpha<1 / 2$,

$$
K=\exp \left(\left(\sqrt{\frac{1}{2}}+o(1)\right) \sqrt{\log T \log \log T}\right)
$$

Argument 4: Moments

Extreme values of zeta: Moments

Let

$$
m_{T}=\max _{0 \leq t \leq T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|
$$

and

$$
I_{k}=\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2 k} \mathrm{~d} t
$$

Then trivially, $\left(m_{T}\right)^{2 k} \geq I_{k}$.

Extreme values of zeta: Moments

Let

$$
m_{T}=\max _{0 \leq t \leq T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|
$$

and

$$
I_{k}=\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2 k} \mathrm{~d} t
$$

Then trivially, $\left(m_{T}\right)^{2 k} \geq I_{k}$.
In the other direction, if t_{0} is the height of the maximum value, then

$$
\left(m_{T}\right)^{2 \ell} \ll 2^{2 \ell} \log T \int_{t_{0}-C / \log T}^{t_{0}+C / \log T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2 \ell} \mathrm{~d} t \ll 2^{2 \ell} l_{\ell} T \log T
$$

Hence,

$$
\left(I_{k}\right)^{1 / 2 k} \leq m_{T} \ll(T \log T)^{1 / 2 \ell}\left(I_{\ell}\right)^{1 / 2 \ell}
$$

Extreme values of zeta: Moments

Using known large- k asymptotics for the constant in the Keating-Snaith moment conjecture (which is only made for finite k), one can show that it cannot hold for

$$
k \geq \sqrt{\frac{8 \log T}{\log \log T}}
$$

If it does hold for such a large value of k, then

$$
\max _{t \in[0, T]}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|=\exp \left(\left(\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log T \log \log T}\right)
$$

Related Conjectures

Extreme values: $S(t)$

The extreme values of $\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|$ were deduced from knowledge of $\mathfrak{R e} \log \zeta\left(\frac{1}{2}+\mathrm{i} t\right)$.
Similar arguments work for $\mathfrak{I m} \zeta\left(\frac{1}{2}+\mathrm{i} t\right)$, and hence for $S(t)$, the error term in the number of zeros of the zeta-function up to height t.

Conjecture

$$
\limsup _{t \rightarrow \infty} \frac{S(t)}{\sqrt{\log t \log \log t}}=\frac{1}{\pi \sqrt{2}}
$$

Extreme values: Other L-functions

For the Symplectic family of real primitive Dirichlet L-functions $L\left(s, \chi_{d}\right)$, where $\chi_{d}=\binom{d}{}$.)

Conjecture

$$
\max _{|d| \leq D}\left|L\left(\frac{1}{2}, \chi_{d}\right)\right|=O(\exp ((1+\varepsilon) \sqrt{\log D \log \log D}))
$$

for all $\varepsilon>0$ and for no $\varepsilon<0$.

Extreme values: Other L-functions

For the Symplectic family of real primitive Dirichlet L-functions $L\left(s, \chi_{d}\right)$, where $\chi_{d}=\binom{d}{}$.)

Conjecture

$$
\max _{|d| \leq D}\left|L\left(\frac{1}{2}, \chi_{d}\right)\right|=O(\exp ((1+\varepsilon) \sqrt{\log D \log \log D}))
$$

for all $\varepsilon>0$ and for no $\varepsilon<0$.
For the Orthogonal family of Dirichlet series associated to holomorphic cusp forms of weight k and level N :

Conjecture

$$
\begin{aligned}
& \max _{\substack{t \in S_{k}(\Gamma 0(N)) \\
k N \leq D}}\left|L\left(\frac{k}{2}, f\right)\right|=O(\exp ((1+\varepsilon) \sqrt{\log D \log \log D})) \\
& \text { for all } \varepsilon>0 \text { and for no } \varepsilon<0
\end{aligned}
$$

Summary

Summary

We gave several arguments (based on random matrix theory, a random prime model, and moments) supporting the conjecture that

$$
\max _{t \in[0, T]}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|=\exp \left(\left(\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log T \log \log T}\right)
$$

