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Extreme values of zeta

Conjecture (Farmer, Gonek, Hughes)

max
t∈[0,T ]

|ζ(1
2 + it)| = exp

(( 1√
2

+ o(1)
)√

log T log log T
)
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Bounds on extreme values of zeta

Theorem (Littlewood; Ramachandra and Sankaranarayanan,
Soundararajan; Chandee and Soundararajan)
Under RH, there exists a C such that

max
t∈[0,T ]

|ζ(1
2 + it)| = O

(
exp

(
C

log T
log log T

))

Theorem (Montgomery; Balasubramanian and Ramachandra;
Balasubramanian; Soundararajan)
There exists a C′ such that

max
t∈[0,T ]

|ζ(1
2 + it)| = Ω

(
exp

(
C′
√

log T
log log T

))
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The set-up:
Random Matrix Theory
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Random matrix theory

Nuclear physics (energy spectra of heavy nuclei).
Quantum Chaos (is a system classically chaotic or integrable?)
Significance of correlations in large data sets.
Bus arrival times in Cuernavaca, Mexico & spacing between cars
parked in London.
And many, many other applications.
Interesting and challenging mathematics.
Models zeros of the Riemann zeta function.
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Characteristic polynomials

Keating and Snaith modelled the Riemann zeta function with

ZUN (θ) := det(IN − UNe−iθ)

=
N∏

n=1

(1− ei(θn−θ))

where UN is an N × N unitary matrix chosen with Haar measure.

The matrix size N is connected to the height up the critical line T via

N = log
T
2π
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Characteristic polynomials
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Graph of the value distribution of log |ζ( 1
2 + it)| around the 1020th zero (red),

against the probability density of log |ZUN (0)| with N = 42 (green).
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Characteristic polynomials: Normal distribution

Theorem (Selberg)
As T →∞,

1
T

meas

0 ≤ t ≤ T :
log
∣∣ζ(1

2 + it)
∣∣√

1
2 log log T

≤ C

→ 1√
2π

∫ C

−∞
e−x2/2 dx

Theorem (Keating-Snaith)
As N →∞,

P

 log
∣∣ZUN (0)

∣∣√
1
2 log N

≤ C

→ 1√
2π

∫ C

−∞
e−x2/2 dx

Christopher Hughes (University of York) Bounding the zeta function Jeju, Korea, 23 August 2012 9 / 34



Characteristic polynomials: Moments

Moment Riemann Zeta Function Characteristic polynomial

2nd log T N

4th 1
12

6
π2 (log T )4 1

12N4

6th 42
9! a(3)(log T )9 42

9! N9

8th 24024
16! a(4)(log T )16 24024

16! N16

2k th ? G(k+1)2

G(2k+1)a(k)(log T )k2 G(k+1)2

G(2k+1)Nk2
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The Keating-Snaith conjecture

Theorem

E
[
|ZUN (0)|2k

]
∼ G2(k + 1)

G(2k + 1)
Nk2

Conjecture

1
T

∫ T

0
|ζ(1

2 + it)|2k dt ∼ a(k)
G2(k + 1)

G(2k + 1)

(
log

T
2π

)k2

where

a(k) =
∏

p
prime

(
1− 1

p

)k2 ∞∑
m=0

(
Γ(m + k)

m! Γ(k)

)2

p−m
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An Euler-Hadamard hybrid

Theorem (Gonek, Hughes, Keating)
A simplified form of our theorem is:

ζ(1
2 + it) = P(t ; X )Z (t ; X ) + errors

where

P(t ; X ) =
∏
p≤X

(
1− 1

p
1
2 +it

)−1

and

Z (t ; X ) = exp

(∑
γn

Ci(|t − γn| log X )

)
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An Euler-Hadamard hybrid: Primes only

Graph of |P(t + t0; X )|, with t0 = γ1012+40,
with X = log t0 ≈ 26 (red) and X = 1000 (green).
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An Euler-Hadamard hybrid: Zeros only

Graph of |Z (t + t0; X )|, with t0 = γ1012+40,
with X = log t0 ≈ 26 (red) and X = 1000 (green).
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An Euler-Hadamard hybrid: Primes and zeros

Graph of |ζ( 1
2 + i(t + t0))| (black) and |P(t + t0; X )Z (t + t0; X )|,

with t0 = γ1012+40, with X = log t0 ≈ 26 (red) and X = 1000 (green).
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An Euler-Hadamard hybrid: Moments

Theorem
If X = O(log T )

1
T

∫ 2T

T
|P(t ; X )|2k dt ∼ a(k)(eγ log X )k2

Conjecture

If X ,T →∞ such that log T
log X →∞

1
T

∫ T

0
|Z (t ; X )|2k dt ∼ G2(k + 1)

G(2k + 1)

(
log T

eγ log X

)k2

This recovers the Keating-Snaith conjecture.
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Argument 1:
Modeling Zeros With RMT
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Extreme values of zeta: Zeros

Simply taking the largest value of a characteristic polynomial doesn’t
work.

Split the interval [0,T ] up into

M =
T log T

N

blocks, each containing approximately N zeros.
Model each block with the characteristic polynomial of an N × N
random unitary matrix.
Find the smallest K = K (M,N) such that choosing M independent
characteristic polynomials of size N, almost certainly none of them will
be bigger than K .
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Extreme values of zeta: Zeros

Note that

P
{

max
1≤j≤M

max
θ
|Z

U(j)
N

(θ)| ≤ K
}

= P
{

max
θ
|ZUN (θ)| ≤ K

}M

Theorem
Let 0 < β < 2. If M = exp(Nβ), and if

K = exp
(√(

1− 1
2β + ε

)
log M log N

)
then

P
{

max
1≤j≤M

max
θ
|Z

U(j)
N

(θ)| ≤ K
}
→ 1

as N →∞ for all ε > 0, but for no ε < 0.
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Extreme values of zeta: Zeros

Recall
ζ(1

2 + it) = P(t ; X )Z (t ; X ) + errors

and that Z (t ; X ) can be modelled by characteristic polynomials of size

N =
log T

eγ log X

Therefore the previous theorem suggests

Conjecture
If X = log T , then

max
t∈[0,T ]

|Z (t ; X )| = exp
(( 1√

2
+ o(1)

)√
log T log log T

)
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Extreme values of zeta: Zeros

Theorem
By the PNT, if X = log T then for any t ∈ [0,T ],

P(t ; X ) = O

(
exp

(
C

√
log T

log log T

))

Thus one is led to the max values conjecture

Conjecture

max
t∈[0,T ]

|ζ(1
2 + it)| = exp

(( 1√
2

+ o(1)
)√

log T log log T
)
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Argument 2:
Random Prime Model
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Extreme values of zeta: Primes

First note that

P(t ; X ) = exp

∑
p≤X

1
p1/2+it

×O(log X )

Treat p−it as independent random variables distributed uniformly on
the unit circle.
This suggests the distribution of

Re
∑
p≤X

p−it
√

p

tends to Gaussian with mean 0 and variance 1
2 log log X as X →∞.
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Extreme values of zeta: Primes

We let X = exp(
√

log T ) and model the maximum of P(t ; X ) by finding
the maximum of the Gaussian random variable sampled T (log T )1/2

times. This suggests

max
t∈[0,T ]

|P(t ; X )| = O
(

exp
(

(
1√
2

+ ε)
√

log T log log T
))

for all ε > 0 and no ε < 0.

For such a large X , random matrix theory suggests that

max
t∈[0,T ]

|Z (t ; X )| = O
(

exp
(√

log T
))

.

This gives another justification of the large values conjecture.
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Argument 3:
Zeros and Primes
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Extreme values of zeta: Zeros and primes

If X = exp(logα T ) with 0 < α < 1
2 , then the largest values of Z (t ; X )

and P(t ; X ) are of approximately the same size and both will contribute
to the largest values of ζ(1

2 + it).

Specifically, |Z (t ; X )| gets as large as

exp
(

1√
2

√
(1− 2α) log T log log T

)
,

and |P(t ; X )| gets as large as

exp
(√

α log T log log T
)
.

The product of these two is greater than our conjecture for all α
between 0 and 1/2.
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Extreme values of zeta: Zeros and primes

This is because |Z (t ; X )| and |P(t ; X )| will not simultaneously attain
their maximum values.

The distribution of log |Z (t ; X )|+ log |P(t ; X )| will be the convolution of
the two distributions.
Since ζ(1

2 + it) is close to its maximum value over a window of size
C/ log T , we wish to find the smallest K such that

meas {0 < t < T : |P(t ; X )||Z (t ; X )| ≥ K} � 1
log T

,

A saddle point approximation argument yields that if X = exp(logα T )
then for all 0 < α < 1/2,

K = exp

((√1
2

+ o(1)
)√

log T log log T

)
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Argument 4:
Moments
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Extreme values of zeta: Moments

Let
mT = max

0≤t≤T
|ζ(1

2 + it)|

and

Ik =
1
T

∫ T

0
|ζ(1

2 + it)|2k dt

Then trivially, (mT )2k ≥ Ik .

In the other direction, if t0 is the height of the maximum value, then

(mT )2` � 22` log T
∫ t0+C/ log T

t0−C/ log T
|ζ(1

2 + it)|2` dt � 22`I`T log T

Hence,
(Ik )1/2k ≤ mT � (T log T )1/2`(I`)1/2`
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Extreme values of zeta: Moments

Using known large-k asymptotics for the constant in the
Keating-Snaith moment conjecture (which is only made for finite k ),
one can show that it cannot hold for

k ≥

√
8 log T

log log T

If it does hold for such a large value of k , then

max
t∈[0,T ]

|ζ(1
2 + it)| = exp

(( 1√
2

+ o(1)
)√

log T log log T
)
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Related Conjectures
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Extreme values: S(t)

The extreme values of
∣∣ζ(1

2 + it)
∣∣ were deduced from knowledge of

Re log ζ(1
2 + it).

Similar arguments work for Imζ(1
2 + it), and hence for S(t), the error

term in the number of zeros of the zeta-function up to height t .

Conjecture

lim sup
t→∞

S(t)√
log t log log t

=
1

π
√

2
.
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Extreme values: Other L-functions

For the Symplectic family of real primitive Dirichlet L-functions L(s, χd ),
where χd =

(d
·
)
)

Conjecture

max
|d |≤D

∣∣L(1
2 , χd )

∣∣ = O
(

exp
(

(1 + ε)
√

log D log log D
))

for all ε > 0 and for no ε < 0.

For the Orthogonal family of Dirichlet series associated to holomorphic
cusp forms of weight k and level N:

Conjecture

max
f∈Sk (Γ0(N))

kN≤D

∣∣L(k
2 , f )

∣∣ = O
(

exp
(

(1 + ε)
√

log D log log D
))

for all ε > 0 and for no ε < 0.
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Summary

Summary

We gave several arguments (based on random matrix theory, a
random prime model, and moments) supporting the conjecture that

max
t∈[0,T ]

|ζ(1
2 + it)| = exp

(
(

1√
2

+ o(1))
√

log T log log T
)
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