Bounding the zeta function

Christopher Hughes Joint with David Farmer and Steve Gonek

THE UNIVERSITY of York

Jeju, Korea, 23 August 2012

Christopher Hughes (University of York)

Bounding the zeta function

How big can the Riemann zeta function get?

 ζ

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 2 / 34

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

How big can the Riemann zeta function get?

 ζ

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 2 / 34

How big can the Riemann zeta function get?

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 2 / 34

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Conjecture (Farmer, Gonek, Hughes)

$$\max_{t \in [0,T]} |\zeta(\frac{1}{2} + \mathrm{i}t)| = \exp\left(\left(\frac{1}{\sqrt{2}} + o(1)\right)\sqrt{\log T \log \log T}\right)$$

Christopher Hughes (University of York)

伺 ト イ ヨ ト イ ヨ

Theorem (Littlewood; Ramachandra and Sankaranarayanan, Soundararajan; Chandee and Soundararajan)

Under RH, there exists a C such that

$$\max_{t \in [0,T]} |\zeta(\frac{1}{2} + \mathrm{i}t)| = O\left(\exp\left(C\frac{\log T}{\log\log T}\right)\right)$$

Theorem (Montgomery; Balasubramanian and Ramachandra; Balasubramanian; Soundararajan)

There exists a C' such that

$$\max_{t \in [0,T]} |\zeta(\frac{1}{2} + \mathrm{i}t)| = \Omega\left(\exp\left(C'\sqrt{\frac{\log T}{\log\log T}}\right)\right)$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The set-up: Random Matrix Theory

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 5 / 34

A ►

- Nuclear physics (energy spectra of heavy nuclei).
- Quantum Chaos (is a system classically chaotic or integrable?)
- Significance of correlations in large data sets.
- Bus arrival times in Cuernavaca, Mexico & spacing between cars parked in London.
- And many, many other applications.
- Interesting and challenging mathematics.
- Models zeros of the Riemann zeta function.

(4) The (b)

Keating and Snaith modelled the Riemann zeta function with

$$egin{aligned} Z_{U_N}(heta) &:= \det(I_N - U_N e^{-\mathrm{i} heta}) \ &= \prod_{n=1}^N (1 - e^{\mathrm{i}(heta_n - heta)}) \end{aligned}$$

where U_N is an $N \times N$ unitary matrix chosen with Haar measure.

The matrix size N is connected to the height up the critical line T via

 $N = \log \frac{T}{2\pi}$

Christopher Hughes (University of York)

Characteristic polynomials

against the probability density of $log |Z_{U_N}(0)|$ with N = 42 (green).

Theorem (Selberg)

As $T
ightarrow\infty$,

$$\frac{1}{T} \max\left\{ 0 \le t \le T : \frac{\log \left|\zeta(\frac{1}{2} + \mathrm{i}t)\right|}{\sqrt{\frac{1}{2}\log\log T}} \le C \right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{C} e^{-x^2/2} \,\mathrm{d}x$$

Theorem (Keating-Snaith)

As N $ightarrow \infty$,

$$\mathbb{P}\left\{\frac{\log\left|Z_{U_N}(0)\right|}{\sqrt{\frac{1}{2}\log N}} \leq C\right\} \to \frac{1}{\sqrt{2\pi}}\int_{-\infty}^C e^{-x^2/2} \,\mathrm{d}x$$

Christopher Hughes (University of York)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Riemann Zeta Function	Characteristic polynomial
	Riemann Zeta Function

2

Riemann Zeta Function	Characteristic polynomial
log T	

2

Moment	Riemann Zeta Function	Characteristic polynomial
2 nd	log T	
4 th	$\frac{1}{12}\frac{6}{\pi^2}(\log T)^4$	

2

Riemann Zeta Function	Characteristic polynomial
log T	
$\frac{1}{12}\frac{6}{\pi^2}(\log T)^4$	
$\frac{42}{9!}a(3)(\log T)^9$	
	$\log T$ $\frac{1}{12} \frac{6}{\pi^2} (\log T)^4$

2

Moment	Riemann Zeta Function	Characteristic polynomial
2 nd	log T	
4 th	$\frac{1}{12}\frac{6}{\pi^2}(\log T)^4$	
6 th	$\frac{42}{9!}a(3)(\log T)^9$	
8 th	$\frac{24024}{16!}a(4)(\log T)^{16}$	

Christopher Hughes (University of York)

2

Moment	Riemann Zeta Function	Characteristic polynomial
2 nd	log T	
4 th	$\frac{1}{12}\frac{6}{\pi^2}(\log T)^4$	
6 th	$\frac{42}{9!}a(3)(\log T)^9$	
8 th	$\frac{24024}{16!}a(4)(\log T)^{16}$	
2 <i>k</i> th	?	

2

Moment	Riemann Zeta Function	Characteristic polynomial
2 nd	log T	
4 th	$\frac{1}{12}\frac{6}{\pi^2}(\log T)^4$	
6 th	$\frac{42}{9!}a(3)(\log T)^9$	
8 th	$\frac{24024}{16!}a(4)(\log T)^{16}$	
2 <i>k</i> th	?	$rac{G(k+1)^2}{G(2k+1)} N^{k^2}$

2

Moment	Riemann Zeta Function	Characteristic polynomial
2 nd	log T	N
4 th	$\frac{1}{12}\frac{6}{\pi^2}(\log T)^4$	$\frac{1}{12}N^4$
6 th	$\frac{42}{9!}a(3)(\log T)^9$	$\frac{42}{9!}N^9$
8 th	$\frac{24024}{16!}a(4)(\log T)^{16}$	24024 N ¹⁶
2k th	?	$rac{G(k+1)^2}{G(2k+1)} N^{k^2}$

Christopher Hughes (University of York)

2

Moment	Riemann Zeta Function	Characteristic polynomial
2 nd	log T	N
4 th	$\frac{1}{12}\frac{6}{\pi^2}(\log T)^4$	$\frac{1}{12}N^4$
6 th	$\frac{42}{9!}a(3)(\log T)^9$	$\frac{42}{9!}N^9$
8 th	$\frac{24024}{16!}a(4)(\log T)^{16}$	24024 № 16
2k th	$\frac{G(k+1)^2}{G(2k+1)} a(k) (\log T)^{k^2}$	$rac{G(k+1)^2}{G(2k+1)} N^{k^2}$

Christopher Hughes (University of York)

2

10/34

The Keating-Snaith conjecture

Theorem

$$\mathbb{E}\left[\left|Z_{U_N}(0)\right|^{2k}\right] \sim \frac{G^2(k+1)}{G(2k+1)} N^{k^2}$$

Conjecture

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + \mathrm{i}t)|^{2k} \, \mathrm{d}t \sim \frac{a(k)}{G(2k+1)} \left(\log \frac{T}{2\pi}\right)^{k!}$$

where

$$\mathbf{a}(k) = \prod_{\substack{p \\ \text{prime}}} \left(1 - \frac{1}{p}\right)^{k^2} \sum_{m=0}^{\infty} \left(\frac{\Gamma(m+k)}{m! \, \Gamma(k)}\right)^2 p^{-n}$$

Christopher Hughes (University of York)

▶ < □ ▶ < □ ▶ < □ ▶
 Jeju, Korea, 23 August 2012

Theorem (Gonek, Hughes, Keating)

A simplified form of our theorem is:

$$\zeta(\frac{1}{2}+\mathrm{i}t)=P(t;X)Z(t;X)+errors$$

where

$$P(t; X) = \prod_{p \le X} \left(1 - \frac{1}{p^{\frac{1}{2} + it}}\right)^{-1}$$

and

$$Z(t; X) = \exp\left(\sum_{\gamma_n} \operatorname{Ci}(|t - \gamma_n| \log X)\right)$$

Christopher Hughes (University of York)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

An Euler-Hadamard hybrid: Primes only

Christopher Hughes (University of York)

An Euler-Hadamard hybrid: Zeros only

An Euler-Hadamard hybrid: Primes and zeros

An Euler-Hadamard hybrid: Moments

Theorem

If $X = O(\log T)$

$$rac{1}{T}\int_{T}^{2T}|P(t;X)|^{2k}\,\mathrm{d}t\sim \pmb{a(k)}(e^{\gamma}\log X)^{k^2}$$

Conjecture

If
$$X, T \to \infty$$
 such that $\frac{\log T}{\log X} \to \infty$

$$\frac{1}{T}\int_0^T |Z(t;X)|^{2k} \, \mathrm{d}t \sim \frac{G^2(k+1)}{G(2k+1)} \left(\frac{\log T}{e^{\gamma}\log X}\right)^k$$

This recovers the Keating-Snaith conjecture.

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012

16/34

・ロト ・ 四ト ・ ヨト ・ ヨト

2

Argument 1: Modeling Zeros With RMT

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 17 / 34

A .

Split the interval [0, T] up into

$$M = \frac{T \log T}{N}$$

blocks, each containing approximately N zeros.

Split the interval [0, T] up into

$$M = \frac{T \log T}{N}$$

blocks, each containing approximately N zeros. Model each block with the characteristic polynomial of an $N \times N$ random unitary matrix.

Split the interval [0, T] up into

$$M = \frac{T \log T}{N}$$

blocks, each containing approximately *N* zeros.

Model each block with the characteristic polynomial of an $N \times N$ random unitary matrix.

Find the smallest K = K(M, N) such that choosing *M* independent characteristic polynomials of size *N*, almost certainly none of them will be bigger than *K*.

Extreme values of zeta: Zeros

Note that

$$\mathbb{P}\left\{\max_{1\leq j\leq M}\max_{\theta}|Z_{U_{N}^{(j)}}(\theta)|\leq K\right\}=\mathbb{P}\left\{\max_{\theta}|Z_{U_{N}}(\theta)|\leq K\right\}^{M}$$

Theorem

Let $0 < \beta < 2$. If $M = \exp(N^{\beta})$, and if

$$K = \exp\left(\sqrt{\left(1 - \frac{1}{2}\beta + \varepsilon\right)\log M\log N}\right)$$

then

$$\mathbb{P}\left\{\max_{1\leq j\leq M}\max_{\theta}|Z_{U_{N}^{(j)}}(\theta)|\leq K\right\}\rightarrow 1$$

as $N \to \infty$ for all $\varepsilon > 0$, but for no $\varepsilon < 0$.

э.

イロン イ理 とく ヨン イヨン

Extreme values of zeta: Zeros

Recall

$$\zeta(\frac{1}{2} + it) = P(t; X)Z(t; X) + \text{errors}$$

and that Z(t; X) can be modelled by characteristic polynomials of size

$$N = \frac{\log T}{e^{\gamma} \log X}$$

Recall

$$\zeta(\frac{1}{2} + it) = P(t; X)Z(t; X) + errors$$

and that Z(t; X) can be modelled by characteristic polynomials of size

$$N = \frac{\log T}{e^{\gamma} \log X}$$

Therefore the previous theorem suggests

Conjecture

If $X = \log T$, then

$$\max_{t\in[0,T]} |Z(t;X)| = \exp\left(\left(\frac{1}{\sqrt{2}} + o(1)\right)\sqrt{\log T \log \log T}\right)$$

Christopher Hughes (University of York)

Theorem

By the PNT, if $X = \log T$ then for any $t \in [0, T]$,

$$P(t;X) = O\left(\exp\left(C\frac{\sqrt{\log T}}{\log\log T}\right)\right)$$

Thus one is led to the max values conjecture

Conjecture

$$\max_{t \in [0,T]} |\zeta(\frac{1}{2} + \mathrm{i}t)| = \exp\left(\left(\frac{1}{\sqrt{2}} + o(1)\right)\sqrt{\log T \log \log T}\right)$$

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 21 / 34

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Argument 2: Random Prime Model

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 22 / 34

A .

Extreme values of zeta: Primes

First note that

$$P(t;X) = \exp\left(\sum_{p \leq X} \frac{1}{p^{1/2 + \mathrm{i}t}}\right) \times O(\log X)$$

æ

イロト イヨト イヨト イヨト

First note that

$$P(t; X) = \exp\left(\sum_{p \leq X} \frac{1}{p^{1/2 + \mathrm{i}t}}\right) \times O(\log X)$$

Treat p^{-it} as independent random variables distributed uniformly on the unit circle.

This suggests the distribution of

$$\mathfrak{Re}\sum_{p\leq X}\frac{p^{-\mathrm{i}t}}{\sqrt{p}}$$

tends to Gaussian with mean 0 and variance $\frac{1}{2} \log \log X$ as $X \to \infty$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We let $X = \exp(\sqrt{\log T})$ and model the maximum of P(t; X) by finding the maximum of the Gaussian random variable sampled $T(\log T)^{1/2}$ times. This suggests

$$\max_{t \in [0,T]} |P(t;X)| = O\left(\exp\left((\frac{1}{\sqrt{2}} + \varepsilon)\sqrt{\log T \log \log T}\right)\right)$$

for all $\varepsilon > 0$ and no $\varepsilon < 0$.

< 回 > < 三 > < 三 >

We let $X = \exp(\sqrt{\log T})$ and model the maximum of P(t; X) by finding the maximum of the Gaussian random variable sampled $T(\log T)^{1/2}$ times. This suggests

$$\max_{t \in [0,T]} |P(t;X)| = O\left(\exp\left((\frac{1}{\sqrt{2}} + \varepsilon)\sqrt{\log T \log \log T}\right)\right)$$

for all $\varepsilon > 0$ and no $\varepsilon < 0$.

For such a large X, random matrix theory suggests that

$$\max_{t\in[0,T]} |Z(t;X)| = O\left(\exp\left(\sqrt{\log T}\right)\right).$$

This gives another justification of the large values conjecture.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Argument 3: Zeros and Primes

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 25 / 34

伺 ト イ ヨ ト イ ヨ

If $X = \exp(\log^{\alpha} T)$ with $0 < \alpha < \frac{1}{2}$, then the largest values of Z(t; X) and P(t; X) are of approximately the same size and both will contribute to the largest values of $\zeta(\frac{1}{2} + it)$.

.

If $X = \exp(\log^{\alpha} T)$ with $0 < \alpha < \frac{1}{2}$, then the largest values of Z(t; X)and P(t; X) are of approximately the same size and both will contribute to the largest values of $\zeta(\frac{1}{2} + it)$. Specifically, |Z(t; X)| gets as large as

$$\exp\left(\frac{1}{\sqrt{2}}\sqrt{(1-2\alpha)\log T\log\log T}\right),$$

and |P(t; X)| gets as large as

$$\exp\left(\sqrt{\alpha \log T \log \log T}\right).$$

The product of these two is greater than our conjecture for all α between 0 and 1/2.

< 回 > < 三 > < 三 >

This is because |Z(t; X)| and |P(t; X)| will not simultaneously attain their maximum values.

< ロ > < 同 > < 回 > < 回 >

This is because |Z(t; X)| and |P(t; X)| will not simultaneously attain their maximum values.

The distribution of $\log |Z(t; X)| + \log |P(t; X)|$ will be the convolution of the two distributions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This is because |Z(t; X)| and |P(t; X)| will not simultaneously attain their maximum values.

The distribution of $\log |Z(t; X)| + \log |P(t; X)|$ will be the convolution of the two distributions.

Since $\zeta(\frac{1}{2} + it)$ is close to its maximum value over a window of size $C/\log T$, we wish to find the smallest *K* such that

meas
$$\{0 < t < T : |P(t; X)| | Z(t; X)| \ge K\} \ll \frac{1}{\log T},$$

A (10) A (10)

This is because |Z(t; X)| and |P(t; X)| will not simultaneously attain their maximum values.

The distribution of $\log |Z(t; X)| + \log |P(t; X)|$ will be the convolution of the two distributions.

Since $\zeta(\frac{1}{2} + it)$ is close to its maximum value over a window of size $C/\log T$, we wish to find the smallest *K* such that

meas
$$\{0 < t < T : |P(t; X)| | Z(t; X)| \ge K\} \ll \frac{1}{\log T}$$
,

A saddle point approximation argument yields that if $X = \exp(\log^{\alpha} T)$ then for all $0 < \alpha < 1/2$,

$$K = \exp\left(\left(\sqrt{\frac{1}{2}} + o(1)\right)\sqrt{\log T \log \log T}\right)$$

Argument 4: Moments

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 28 / 34

э

A (10) A (10) A (10)

Extreme values of zeta: Moments

Let

$$m_T = \max_{0 \le t \le T} |\zeta(\frac{1}{2} + \mathrm{i}t)|$$

and

$$I_k = \frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + \mathrm{i}t)|^{2k} \mathrm{d}t$$

Then trivially, $(m_T)^{2k} \ge I_k$.

э

Extreme values of zeta: Moments

Let

$$m_T = \max_{0 \le t \le T} |\zeta(\frac{1}{2} + \mathrm{i}t)|$$

and

$$I_k = \frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + \mathrm{i}t)|^{2k} \mathrm{d}t$$

Then trivially, $(m_T)^{2k} \ge I_k$. In the other direction, if t_0 is the height of the maximum value, then

$$(m_T)^{2\ell} \ll 2^{2\ell} \log T \int_{t_0 - C/\log T}^{t_0 + C/\log T} |\zeta(\frac{1}{2} + \mathrm{i}t)|^{2\ell} \, \mathrm{d}t \ll 2^{2\ell} I_\ell T \log T$$

Hence,

$$(I_k)^{1/2k} \le m_T \ll (T \log T)^{1/2\ell} (I_\ell)^{1/2\ell}$$

Christopher Hughes (University of York)

A (10) A (10) A (10)

Using known large-k asymptotics for the constant in the Keating-Snaith moment conjecture (which is only made for finite k), one can show that it cannot hold for

$$k \ge \sqrt{\frac{8\log T}{\log\log T}}$$

If it does hold for such a large value of k, then

$$\max_{t \in [0,T]} |\zeta(\frac{1}{2} + \mathrm{i}t)| = \exp\left(\left(\frac{1}{\sqrt{2}} + o(1)\right)\sqrt{\log T \log \log T}\right)$$

Christopher Hughes (University of York)

< 回 > < 三 > < 三 >

Related Conjectures

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 31 / 34

크

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The extreme values of $|\zeta(\frac{1}{2} + it)|$ were deduced from knowledge of $\Re \epsilon \log \zeta(\frac{1}{2} + it)$.

Similar arguments work for $\Im \mathfrak{m} \zeta(\frac{1}{2} + it)$, and hence for S(t), the error term in the number of zeros of the zeta-function up to height *t*.

Conjecture $\limsup_{t \to \infty} \frac{S(t)}{\sqrt{\log t \log \log t}} = \frac{1}{\pi \sqrt{2}}.$

Christopher Hughes (University of York)

Bounding the zeta function

Jeju, Korea, 23 August 2012 32 / 34

Extreme values: Other L-functions

For the Symplectic family of real primitive Dirichlet *L*-functions $L(s, \chi_d)$, where $\chi_d = \begin{pmatrix} d \\ \cdot \end{pmatrix}$

Conjecture

$$\max_{|d| \le D} \left| L(\frac{1}{2}, \chi_d) \right| = O\left(\exp\left((1 + \varepsilon) \sqrt{\log D \log \log D} \right) \right)$$

for all $\varepsilon > 0$ and for no $\varepsilon < 0$.

< ロ > < 同 > < 回 > < 回 >

Extreme values: Other L-functions

For the Symplectic family of real primitive Dirichlet *L*-functions $L(s, \chi_d)$, where $\chi_d = \begin{pmatrix} d \\ \cdot \end{pmatrix}$)

Conjecture

$$\max_{d|\leq D} \left| L(\frac{1}{2}, \chi_d) \right| = O\left(\exp\left((1 + \varepsilon) \sqrt{\log D \log \log D} \right) \right)$$

for all $\varepsilon > 0$ and for no $\varepsilon < 0$.

For the Orthogonal family of Dirichlet series associated to holomorphic cusp forms of weight k and level N:

Conjecture

$$\max_{\substack{f \in S_k(\Gamma_0(N))\\kN < D}} \left| L(\frac{k}{2}, f) \right| = O\left(\exp\left((1 + \varepsilon) \sqrt{\log D \log \log D} \right) \right)$$

for all $\varepsilon > 0$ and for no $\varepsilon < 0$.

Christopher Hughes (University of York)

イロン 不良 とくほう イロン

33/34

э

Summary

We gave several arguments (based on random matrix theory, a random prime model, and moments) supporting the conjecture that

$$\max_{t \in [0,T]} |\zeta(\frac{1}{2} + \mathrm{i}t)| = \exp\left(\left(\frac{1}{\sqrt{2}} + o(1)\right)\sqrt{\log T \log \log T}\right)$$

Christopher Hughes (University of York)

伺 ト イ ヨ ト イ ヨ